Thermon

Chemwatch: **5282-05** Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **14/11/2017**Print Date: **16/11/2017**L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	T-75
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Use according to manufacturer's directions.
	Heat Transfer Compound.

Details of the supplier of the safety data sheet

Registered company name	Thermon
Address	30 London Drive Bayswater Victoria 3153 Australia
Telephone	+61 3 9762 6900
Fax	+61 3 9762 9519
Website	Not Available
Email	Not Available

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification ^[1]	Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Germ cell mutagenicity Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation)	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD

WARNING

Hazard statement(s)

H315

Causes skin irritation.

Version No: 2.1.1.1

T-75

Issue Date: 14/11/2017 Print Date: 16/11/2017

H319	Causes serious eye irritation.
H317	May cause an allergic skin reaction.
H341	Suspected of causing genetic defects.
H335	May cause respiratory irritation.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P261	Avoid breathing mist/vapours/spray.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/attention.	
P362	Take off contaminated clothing and wash before reuse.	
P302+P352	IF ON SKIN: Wash with plenty of soap and water.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	30-60	aqueous alklaline sodium silicate
1302-67-6	10-30	magnesium aluminate
7782-42-5	10-30	graphite
10101-39-0	5-10	calcium metasilicate
1332-58-7	1-5	ball clay

SECTION 4 FIRST AID MEASURES

Description of first aid measures

If this product comes in contact with the eyes: ▶ Wash out immediately with fresh running water.

Eye Contact

- ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Chemwatch: 5282-05 Issue Date: 14/11/2017 Version No: 2.1.1.1 Print Date: 16/11/2017 T-75

Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy
- Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- ▶ Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
- Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium.

[Ellenhorn and Barceloux: Medical Toxicology]

Magnesium is present in the blood, as a normal constituent, at concentrations between 1.6 to 2.2 meg/L. Some 30% is plasma bound. At serum magnesium levels of 3-4 meg/L, signs of CNS depression, loss of reflexes, muscular tone and power, and bradycardia occur. Cardiac arrest (sometimes fatal) and/or respiratory paralysis can occur at plasma levels of 10-15 meq/L. For acute or short term repeated exposures to magnesium:

- Symptomatic hypermagnesaemia appears rarely in the absence of intestinal or renal disease.
- Elevated magnesium levels may cause hypocalcaemia because of decreased parathyroid hormone activity and decreased end-organ responsiveness.
- Patients with severe hypermagnesemia may develop sudden respiratory arrest and must be watched closely for apnoea.
- ▶ Use fluids, then vasopressors for hypotension. Frequently hypotension responds to calcium administration.
- Induce emesis or administer lavage if patient presents within 4 hours of ingestion. Use sodium cathartics, with caution, in presence of cardiac or renal failure.
- · Activated charcoal is not useful.
- ▶ Calcium is an antagonist of magnesium action and is an effective antidote when serum levels exceed 5 meq/L and the patient exhibits symptoms. The adult dose of calcium gluconate is 10 ml of a 10% solution over several minutes. [Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.
The incompanionity	Note that the second se
Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Non combustible. Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: silicon dioxide (SiO2) metal oxides

Version No: **2.1.1.1 T-75**

May emit poisonous fumes.
May emit corrosive fumes.

HAZCHEM Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material for containment and cleaning up				
Minor Spills	 Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water. 			
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. 			

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

 Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. 	
Storage incompatibility • Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.	

Issue Date: 14/11/2017

Print Date: 16/11/2017

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	graphite	Graphite (all forms except fibres) (respirable dust) (natural & synthetic)	3 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	calcium metasilicate	Calcium silicate	10 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	ball clay	Kaolin	10 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
graphite	Graphite; (Mineral carbon)	6 mg/m3	16 mg/m3	95 mg/m3
calcium metasilicate	Calcium metasilicate	30 mg/m3	330 mg/m3	2,000 mg/m3

Ingredient	Original IDLH	Revised IDLH
aqueous alklaline sodium silicate	Not Available	Not Available
magnesium aluminate	Not Available	Not Available
graphite	1,250 mg/m3	Not Available
calcium metasilicate	Not Available	Not Available
ball clay	Not Available	Not Available

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

remove the contaminant.

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
------------------------	------------------------

Chemwatch: 5282-05 Version No: 2.1.1.1

T-75

Issue Date: 14/11/2017 Print Date: 16/11/2017

	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
ı	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production. 3: High production, heavy use		3: High production, heavy use
ı	4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

 Safety glasses with side shields. ► Chemical goggles.

► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

Appearance Charcoal grey paste with no specific odour; partially miscible with water.

Hands/feet protection

- NOTE:
- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Body protection

See Other protection below

Other protection

- Overalls. ▶ P.V.C. apron.
- ▶ Barrier cream.
- ► Skin cleansing cream.
- ▶ Eye wash unit.

Thermal hazards

Not Available

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

• •			
Physical state	Non Slump Paste	Relative density (Water = 1)	1.98
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	101-102	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	>1	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available

Issue Date: **14/11/2017** Print Date: **16/11/2017**

Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	0
Vapour pressure (kPa)	21 @ 61.5	Gas group	Not Available
Solubility in water (g/L)	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	Product is considered stable and hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which
Inhaled	initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
Ingestion	Accidental ingestion of the material may be damaging to the health of the individual. Ingestion may result in nausea, abdominal irritation, pain and vomiting
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Eye	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed

involving organs or biochemical systems.

> haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos.

In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae (e.g., rhodonite)

In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low. Four grades of wollastonite of different fibre size were tested for carcinogenicity in one experiment in rats by intrapleural implantation. There was no information on the purity of the four samples used. A slight increase in the incidence of pleural sarcomas was observed with three grades, all of which contained fibres greater than 4 um in length and less than 0.5 um in diameter.

In two studies by intraperitoneal injection in rats using wollastonite with median fibre lengths of 8.1 um and 5.6 um respectively, no intra-abdominal tumours were found.

Evidence from wollastonite miners suggests that occupational exposure can cause impaired respiratory function and pneumoconiosis. However animal studies have demonstrated that wollastonite fibres have low biopersistence and induce a transient inflammatory response compared to various forms of asbestos. A two-year inhalation study in rats at one dose showed no significant inflammation or fibrosis

Occupational exposure to aluminium compounds may produce asthma, chronic obstructive lung disease and pulmonary fibrosis. Long-term overexposure may produce dyspnoea, cough, pneumothorax, variable sputum production and nodular interstitial fibrosis; death has been reported. Chronic interstitial pneumonia with severe cavitations in the right upper lung and small cavities in the remaining lung tissue, have been observed in gross pathology. Shaver's Disease may result from occupational exposure to fumes or dusts; this may produce respiratory distress and fibrosis with large blebs. Animal studies produce no indication that aluminium or its compounds are carcinogenic.

Because aluminium competes with calcium for absorption, increased amounts of dietary aluminium may contribute to the reduced skeletal mineralisation (osteopenia) observed in preterm infants and infants with growth retardation. In very high doses, aluminium can cause neurotoxicity, and is associated with altered function of the blood-brain barrier. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium, such as deodorants or antacids. In those without allergies, aluminium is not as toxic as heavy metals, but there is evidence of some toxicity if it is consumed in excessive amounts. Although the use of aluminium cookware has not been shown to lead to aluminium toxicity in general, excessive consumption of antacids containing aluminium compounds and excessive use of aluminium-containing antiperspirants provide more significant exposure levels. Studies have shown that consumption of acidic foods or liquids with aluminium significantly increases aluminium absorption, and maltol has been shown to increase the accumulation of aluminium in nervous and osseus tissue. Furthermore, aluminium increases oestrogen-related gene expression in human breast cancer cells cultured in the laboratory These salts' estrogen-like effects have led to their classification as a metalloestrogen. Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk of breast cancer.

After absorption, aluminium distributes to all tissues in animals and humans and accumulates in some, in particular bone. The main carrier of the aluminium ion in plasma is the iron binding protein, transferrin. Aluminium can enter the brain and reach the placenta and foetus. Aluminium may persist for a very long time in various organs and tissues before it is excreted in the urine. Although retention times for aluminium appear to be longer in humans than in rodents, there is little information allowing extrapolation from rodents to the humans.

At high levels of exposure, some aluminium compounds may produce DNA damage in vitro and in vivo via indirect mechanisms. The database on carcinogenicity of aluminium compounds is limited. No indication of any carcinogenic potential was obtained in mice given aluminium potassium sulphate at high levels in the diet.

Aluminium has shown neurotoxicity in patients undergoing dialysis and thereby chronically exposed parenterally to high concentrations of aluminium. It has been suggested that aluminium is implicated in the aetiology of Alzheimer's disease and associated with other neurodegenerative diseases in humans. However, these hypotheses remain controversial, Several compounds containing aluminium have the potential to produce neurotoxicity (mice, rats) and to affect the male reproductive system (dogs). In addition, after maternal exposure they have shown embryotoxicity (mice) and have affected the developing nervous system in the offspring (mice, rats). The available studies have a number of limitations and do not allow any dose-response relationships to be established. The combined evidence from several studies in mice, rats and dogs that used dietary administration of aluminium compounds produce lowest-observed-adverse-effect levels (LOAELs) for effects on neurotoxicity, testes, embryotoxicity, and the developing nervous system of 52, 75, 100, and 50 mg aluminium/kg bw/day, respectively. Similarly, the lowest no-observed-adverse-effect levels (NOAELs) for effects on these endpoints were reported at 30, 27, 100, and for effects on the developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively.

Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example, found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium ion levels at critical concentrations. Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plagues consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of "tau" a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorvlates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve

Issue Date: **14/11/2017**Print Date: **16/11/2017**

cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acetylcholine, norepinephrine, glutamate and GABA).

Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [Walton, J and Bryson-Taylor, D. - Chemistry in Australia, August 1995]

A case of chronic abuse of magnesium citrate (a mild purgative), by a 62 year-old woman, has been reported. Symptoms of abuse included lethargy and severe refractory hypotension. Pathology revealed extreme hypermagnesaemia [6.25 mmol per litre]. She also was found to have a perforated duodenal ulcer. She died after peritoneal dialysis (which reduced serum-magnesium and reduced hypotension.

A patient with normal kidney function developed symptomatic hypermagnesaemia with respiratory arrest and bradycardia after receiving 90 grams of magnesium sulfate over 18 hours.

When magnesium sulfate was given to pregnant rats, a sharp reduction of both the number and the weight of the offspring was observed.

The health hazards associated with bentonite, kaolin, and common clay, which are commercially important clay products, as well as the related phyllosilicate minerals montmorillonite, kaolinite, and illite, have an extensive literature. Fibrous clay minerals, such as sepiolite, attapulgite, and zeolites, have a separate literature.

The biological effects of clay minerals are influenced by their mineral composition and particle size. The decreasing rank order of the potencies of quartz, kaolinite, and montmorillonite to produce lung damage is consistent with their known relative active surface areas and surface chemistry.

Clays are chemically all described as aluminosilicates; these are further classified as bentonite, kaolin and common clays.

Bentonite is a rock formed of highly colloidal and plastic clays composed mainly of montmorillonite, a clay mineral of the smectite group.

Kaolin or china clay is a mixture of different minerals. Its main component is kaolinite; in addition, it frequently contains quartz, mica, feldspar, illite, and montmorillonite.

The main components of common clay and shale are illite and chlorite. Illite is also a component of ball clays. Illite closely resembles micas,

From the limited data available from studies on bentonite-exposed persons, retained montmorillonite appears to effect only mild nonspecific tissue changes, which are similar to those that have been described in the spectrum of changes of the "small airways mineral dust disease" (nodular peribronchiolar dust accumulations containing refractile material [montmorillonite] in association with limited interstitial fibrosis). In some of the studies, radiological abnormalities have also been reported

Long-term occupational exposures to bentonite dust may cause structural and functional damage to the lungs. However, available data are inadequate to conclusively establish a dose-response relationship or even a cause-and-effect relationship due to limited information on period and intensity of exposure and to confounding factors, such as exposure to silica and tobacco smoke.

Long-term exposure to kaolin may lead to a relatively benign pneumoconiosis, in an exposure-related fashion. known as kaolinosis. Deterioration of lung function has been observed only in cases with prominent radiological alterations. Based on data from china clay workers in the United Kingdom, it can be very roughly estimated that kaolin is at least an order of magnitude less potent than quartz.. Clearcut deterioration of respiratory function and related symptoms have been reported only in cases with prominent radiological findings.

The composition of the clay - i.e., quantity and quality of minerals other than kaolinite — is an important determinant of the effects. Bentonite, kaolin, and other clays often contain quartz, and exposure to quartz is causally related to silicosis and lung cancer. Statistically significant increases in the incidence of or mortality from chronic bronchitis and pulmonary emphysema have been reported after exposure to quartz.

The removal of clay particles from the lungs takes place by solubilisation in situ and by physical clearance.

In humans, there was a rapid initial clearance of 8% and 40% of aluminosilicate particles that were, respectively, 1.9 and 6.1 um in aerodynamic diameter from the lung region over 6 days. Thereafter, 4% and 11% of the two particle sizes were removed following a halftime of 20 days, and the rest with half-times of 330 and 420 days.

Ultrafine particles (<100 nm) have a high deposition in the nasal area; they can penetrate the alveolar/capillary barrier. Epidemiological studies have indicated an increase in morbidity and mortality associated with an increase in airborne particulate matter, particularly in the ultrafine size range

An important determinant of the toxicity of clays is the content of quartz. The presence of quartz in the clays studied hampers reliable independent estimation of the fibrogenicity of other components of clays.

Single intratracheal injection into rodents of bentonite and montmorillonite with low content of quartz produced dose- and particle size-dependent cytotoxic effects, as well as transient local inflammation, the signs of which included oedema and, consequently, increased lung weight. After high doses of intratracheal kaolin (containing 8-65% quartz), fibrosis has been described in some studies, whereas at lower kaolin doses, no fibrosis has been observed in the few available studies. There are limited data on the effects of multiple exposures of experimental animals to montmorillonite or bentonite. Mice maintained on diets containing 10% or 25% bentonite but otherwise adequate to support normal growth displayed slightly reduced growth rates, whereas mice maintained on a similar diet with 50% bentonite showed minimal growth and developed fatty livers and eventually fibrosis of the liver and benign hepatomas.

In vitro studies of the effects of bentonite on a variety of mammalian cell types usually indicated a high degree of cytotoxicity. Concentrations below 1.0 mg/ml of bentonite and montmorillonite particles less than 5 um in diameter caused membrane damage and even cell lysis, as well as functional changes in several types of cells.

No adequate studies are available on the carcinogenicity of bentonite. In an inhalation study and in a study using intrapleural injection, kaolin did not induce tumours in rats. No studies are available on the genotoxicity of clays. Single, very limited studies did not demonstrate developmental toxicity in rats after oral exposure to bentonite or kaolin. Chronic dust inhalation of kaolin, as experienced in mineral extraction, has caused kaolinosis with heavy lung marking, emphysema, and nodular pneumoconiosis.

Evidence of kaolinosis (pneumoconiosis) was found in 9% of 553 Cornish china clay workers who had been exposed to

kaolin dust for periods exceeding 5 years, whereas no kaolinosis was observed in workers exposed for less than 5 years. Workers in more heavily exposed jobs of milling, bagging and loading showed a prevalence of kaolinosis rising from 6% in those within between 5 and 15 years exposure to 23% in those exposed for more than 15 years. Workers intermittently and less heavily exposed in the older, outdated drying plants required 25 years of massive exposure before reaching the highest prevalence of 17%. Massive fibrosis was seen in four workers, and six workers needed antituberculosis chemotherapy. Preventative measures instituted include preemployment chest examination and approaches to the problem of dust control.

Sheer, G.; Brit. Jnl. Ind. Med. 21, pp 218-225, 1964

T-75	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
magnesium aluminate	Not Available	Not Available
	TOXICITY	IRRITATION
graphite	Inhalation (rat) LC50: >2 mg/l4 h ^[1]	Not Available
	Oral (rat) LD50: >2000 mg/kg ^[2]	
	TOXICITY	IRRITATION
calcium metasilicate	Oral (rat) LD50: >5000 mg/kg ^[1]	Not Available
ball clay	TOXICITY	IRRITATION
	Not Available	Not Available
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

GRAPHITE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

BALL CLAY

Oral (rat) TDLo: 590000 mg/kg Reproductive effector at very high doses.

MAGNESIUM ALUMINATE & GRAPHITE & CALCIUM **METASILICATE**

No significant acute toxicological data identified in literature search.

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	✓	Reproductivity	0
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	0
Mutagenicity	✓	Aspiration Hazard	0

Legend:

- ★ Data available but does not fill the criteria for classification
- Data available to make classification
- Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

VALUE ENDPOINT **TEST DURATION (HR) SPECIES** SOURCE T-75

Issue Date: **14/11/2017**Print Date: **16/11/2017**

	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
magnesium aluminate	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
graphite	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
calcium metasilicate	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
ball clay	Not Available	Not Available	Not Available	Not Available	Not Available
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) -				

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation	
	No Data available for all ingredients	

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging

- ► Containers may still present a chemical hazard/ danger when empty.
- ► Return to supplier for reuse/ recycling if possible.

Otherwise

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ► Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ► Consult State Land Waste Management Authority for disposal.
- ▶ Bury residue in an authorised landfill.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

disposal

Labels Required

Marine Pollutant

NO

HAZCHEM

Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

MAGNESIUM ALUMINATE(1302-67-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

GRAPHITE(7782-42-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

CALCIUM METASILICATE(10101-39-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Inventory of Chemical Substances (AICS)

BALL CLAY(1332-58-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

	·
National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Υ
Canada - NDSL	N (graphite; ball clay; calcium metasilicate)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	Υ
Japan - ENCS	N (graphite; ball clay)
Korea - KECI	Υ
New Zealand - NZIoC	Υ
Philippines - PICCS	N (magnesium aluminate)
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
magnesium aluminate	11137-98-7, 1302-67-6, 12068-51-8

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

Version No: 2.1.1.1 T-75

Chemwatch: 5282-05 Page 13 of 13 Issue Date: 14/11/2017 Print Date: 16/11/2017

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.